Bannière de page intérieure
Chercher
Maison

Chercher

  • Applications de l'acier au silicium ultra-mince (0,1-0,2 mm) dans le domaine des robots humanoïdes Applications de l'acier au silicium ultra-mince (0,1-0,2 mm) dans le domaine des robots humanoïdes
    Dec 26, 2025
    Acier au silicium ultra-mince (0,1-0,2 mm) est un matériau clé qui pousse la technologie robotique vers des performances et une précision élevées, et est indispensable, notamment dans les systèmes robotiques avancés qui nécessitent une densité de puissance élevée, une réponse rapide et un positionnement précis. L'acier au silicium ultra-mince est principalement utilisé dans les applications suivantes : composants essentiels des robots, ce qui en fait un matériau idéal pour leur « cœur puissant ». Moteurs articulaires : Les mouvements des différentes articulations d’un robot humanoïde, comme le cou, la taille et les doigts, sont assurés par des moteurs articulaires qui leur confèrent puissance et précision. Un seul robot humanoïde peut contenir jusqu’à 50 moteurs. Fabriqués en acier au silicium ultra-mince, ces moteurs sont capables de développer un couple important dans un volume très réduit et d’atteindre des temps de réponse de l’ordre de la milliseconde, ce qui confère au robot des mouvements plus souples et plus naturels.  Mains de précision et moteurs sans noyau : Les mains de précision des robots nécessitent des moteurs plus précis, tels que les moteurs sans noyau et les moteurs de couple sans carter. L’acier au silicium ultra-mince répond aux exigences de fabrication des moteurs sans noyau pour mains de précision, d’une épaisseur de seulement 6 millimètres, et constitue la base d’une manipulation fine des doigts. Les performances supérieures de l'acier au silicium ultra-mince proviennent des avantages fondamentaux de ses propriétés physiques : Minimiser les pertes de fer : Acier au silicium Les tôles subissent des pertes d'énergie (pertes fer) dues aux courants de Foucault dans les champs magnétiques alternatifs, qui sont dissipées sous forme de chaleur. Ces pertes sont proportionnelles au carré de l'épaisseur de la tôle. En réduisant l'épaisseur des tôles d'acier au silicium de 0,35 mm ou 0,5 mm (valeurs traditionnelles) à 0,1 mm ou 0,2 mm, on obtient des aciers au silicium ultra-minces, ce qui réduit considérablement les pertes fer.  Obtention d'une densité de puissance élevée et miniaturisation : L'utilisation d'acier au silicium ultra-mince permet la fabrication de moteurs plus petits et plus légers, à puissance égale. Ceci est crucial pour les articulations robotiques où l'espace est extrêmement limité, contribuant directement à leur miniaturisation et à la réduction de leur poids. Acier Shunge Nous proposons désormais de l'acier au silicium ultra-mince (0,1 à 0,2 mm d'épaisseur), offrant ainsi des solutions de matériaux aux fabricants de robots haute performance. Pour en savoir plus, n'hésitez pas à nous contacter. 
    LIRE LA SUITE
  • Quel matériau est utilisé pour le noyau d'un transformateur ?
    Aug 20, 2025
    Acier au silicium (acier électrique)• Caractéristiques : L'acier au silicium est le matériau de base le plus traditionnel. L'ajout de silicium (généralement de 3 à 5 %) augmente la résistivité pour réduire les pertes par courants de Foucault tout en maintenant une perméabilité magnétique élevée. Laminé à froid tôles d'acier au silicium ont une orientation des grains, ce qui peut optimiser davantage le chemin du flux magnétique.• Avantages : Faible coût, résistance mécanique élevée et processus de fabrication mature, adapté aux applications à fréquence industrielle (50/60 Hz).• Inconvénients : Les pertes fer augmentent significativement aux hautes fréquences (pertes par hystérésis + pertes par courants de Foucault) et le rendement est inférieur à celui des nouveaux matériaux.• Applications :• Pouvoir transformateurs (systèmes de distribution et de transport) ;• Transformateurs industriels (équipements moyenne et basse fréquence).2. Alliage amorphe (acier amorphe)• Caractéristiques : Structure métal-verre avec arrangement atomique désordonné (comme l'alliage fer-bore-silicium), magnétisme isotrope, réduisant significativement les pertes par courants de Foucault et hystérésis. Les pertes de fer sont de 70 à 80 % inférieures à celles de l'acier au silicium.• Avantages : rendement ultra élevé (perte à vide extrêmement faible), respectueux de l'environnement et économe en énergie.• Inconvénients : fragilité mécanique élevée, traitement difficile, densité de flux magnétique de saturation relativement faible (environ 1,5 T) et coût 1,5 à 2 fois supérieur à celui de l'acier au silicium.• Applications :• Transformateurs de distribution à haut rendement (en particulier dans les scénarios d’économie d’énergie) ;• Systèmes d’énergie renouvelable (onduleurs photovoltaïques, transformateurs éoliens). 3. Ferrite•Caractéristiques : Matériau céramique (à base de MnZn/NiZn), haute résistivité (>10^6 Ω·m), supprime naturellement les courants de Foucault, mais la perméabilité magnétique varie considérablement avec la température.•Avantages : Excellentes performances haute fréquence (1 kHz - 1 MHz), petite taille, coût modéré.•Inconvénients : Faible densité de flux de saturation (
    LIRE LA SUITE
  • De quoi est composé le noyau d’un transformateur ?
    Aug 01, 2025
    Le noyau de transformateur (également appelé noyau magnétique) est le composant central du circuit magnétique d'un transformateur. Le choix des matériaux influence directement le rendement, les pertes et les scénarios d'application du transformateur. En fonction de la fréquence de fonctionnement, des besoins en énergie et des facteurs de coût, les matériaux du noyau peuvent être classés selon les types suivants : 1. Traditionnel Tôles d'acier au silicium (Alliage Fe-Si) :​​Composition:Tôles d'acier laminées à froid avec une teneur en silicium comprise entre 0,8 % et 4,8 %, généralement d'une épaisseur de 0,35 mm ou moins.Caractéristiques:Induction magnétique à saturation élevée (Bs≈1,6–1,7T), adaptée aux scénarios de haute puissance à des fréquences de puissance (50/60 Hz).Empilage laminé : des revêtements isolants sont appliqués entre les couches pour réduire les pertes par courants de Foucault. Cependant, ces pertes augmentent considérablement à hautes fréquences.Applications :Principalement utilisé dans les transformateurs de puissance et les noyaux de moteurs pour les équipements électriques basse fréquence et haute puissance. 2. Noyau de ferriteComposition:Ferrite de manganèse-zinc (MnZn) ou de nickel-zinc (NiZn), classée comme oxydes métalliques magnétiques frittés.Caractéristiques:Haute résistivité : réduit considérablement les pertes par courants de Foucault à hautes fréquences, adapté à une gamme de fréquences de 1 kHz à 1 MHz.Densité de flux à faible saturation (Bs ≈10 kHz) :Noyaux de ferrite (MnZn/NiZn) ou alliages nanocristallins. Exigences en matière de pertes​Perte de noyau la plus faible :Alliages amorphes/nanocristallins.Optimisation des pertes haute fréquence :Ferrites. Coût et processusRentabilité et maturité :​Acier au silicium.Coût initial élevé avec un retour sur investissement à long terme :Alliages amorphes/nanocristallins.
    LIRE LA SUITE
  • Quel impact le poinçonnage des tôles d'acier a-t-il sur les performances du moteur ? Quel impact le poinçonnage des tôles d'acier a-t-il sur les performances du moteur ?
    Dec 09, 2023
    Le stratification du moteurLa taille du poinçon est donnée par la conception. Ce qui suit examine les facteurs qui affectent la qualité de la fabrication lorsque la conception reste inchangée.1. Perte et perméabilité magnétique de tôles d'acier au siliciumLes propriétés de perte spécifiques des tôles d'acier au silicium de différents fabricants et des différents numéros de lots d'un même fabricant ne sont pas exactement les mêmes. Bien qu’il existe des valeurs standard prescrites, elles fluctuent dans une certaine plage.Si l'amplitude de la fluctuation est relativement grande ou si le matériau de la tôle d'acier au silicium lui-même ne répond pas aux exigences, l'utilisation de telles tôles d'acier au silicium sur le moteur affectera grandement les performances du moteur, en particulier pour les moteurs moyens et gros moteurs, où la perte de fer représente 10 % de la perte.Plus la proportion est élevée, plus l’impact sur les performances est évident (principalement l’augmentation de la température et le facteur de puissance). Il s’agit d’un danger caché difficile à détecter grâce à la conception électromagnétique.2. Le moule en tôle d'acier au silicium est hors toléranceLes moules en tôle d'acier au silicium, tels que les matrices de poinçonnage et les moules de démoulage, présentent un espace entre le poinçon et la matrice qui augmente progressivement au cours de l'utilisation.Certains fabricants sont encore confrontés à la production lorsque le moule est hors tolérance, et les conséquences sont les suivantes : les bavures de poinçonnage sont considérablement augmentées.Si la bavure est importante, la perte de fer et le courant à vide augmenteront, entraînant une augmentation de la température du moteur, une diminution du facteur de puissance et une diminution du rendement.3. Isolation entre tôles d'acier au siliciumL'isolation entre les tôles d'acier au silicium peut supprimer les courants de Foucault dans le noyau de fer, réduisant ainsi la perte par courants de Foucault qui en résulte (elle est incluse dans la perte de fer). La couche isolante entre les puces est formée des trois manières suivantes :(1) Isolation inter-puces composée du film de peinture des tôles d'acier au silicium laminées à froid ;(2) Le constructeur du moteur applique une peinture isolante sur les tôles perforées sans film de peinture ;(3) Le constructeur du moteur oxyde les tôles perforées pour former une couche isolante.
    LIRE LA SUITE

Need Help? leave a message

laisser un message

We will contact you as soon as possible

nous faire parvenir

Maison

Des produits

whatsApp

Contactez

Need Help? Chat with us

Start a Conversation

Hi! Click one of our members below to chat on