Bannière de page intérieure
Blog
Maison

Blog

  • CD Core: Enhancing Transformer Performance with Cutting-Edge Technology CD Core: Enhancing Transformer Performance with Cutting-Edge Technology
    Jun 25, 2024
    CD cores, also known as cruciform or diagonal cores, are cutting-edge transformer core materials. With their unique design and properties, CD cores offer numerous advantages, revolutionizing the performance and efficiency of transformers. In this article, we will explore the features, benefits and applications of CD cores in the field of transformers. CD cores are constructed using high-quality silicon steel, which exhibits excellent magnetic properties. The core's distinctive cruciform shape with diagonal legs allows for efficient magnetic flux distribution, reducing losses and enhancing transformer performance. CD cores are characterized by low hysteresis loss, high saturation flux density, and excellent permeability, making them ideal for various transformer applications. Benefits of CD Cores: 1. Low Core Losses: CD cores offer reduced hysteresis and eddy current losses, resulting in higher energy efficiency. 2. Enhanced Flux Control: The cruciform shape enables optimal distribution of magnetic flux within the core, minimizing flux leakage and improving overall transformer performance. 3. High Saturation Flux Density: CD cores can accommodate higher magnetic flux densities, enabling transformers to handle increased loads without saturation issues. 4. Improved Thermal Behavior: The unique design of CD cores enhances heat dissipation, reducing the risk of thermal damage. 5. Compact Size: CD cores provide higher power density, allowing for smaller and lighter transformers in space-constrained applications. Applications of CD Cores: CD cores find extensive applications in various transformer types, including: 1. Power Transformers: CD cores enable high-efficiency power transmission, suitable for utility and industrial power distribution systems. 2. Distribution Transformers: CD cores enhance energy efficiency in distribution networks, delivering reliable and stable voltage levels. 3. Renewable Energy Systems: CD cores contribute to the performance and reliability of transformers used in solar and wind power installations. 4. Electrical Vehicles: CD cores support efficient power conversion in electric vehicle charging stations, enabling faster and more reliable charging. 5. Industrial Applications: CD cores are utilized in transformers for industrial machinery, control systems, and other high-power applications.   CD cores, with their advanced design and superior magnetic properties, have revolutionized transformer technology. Their low losses, improved flux control, and compact size make them a preferred choice for numerous applications. As transformers continue to play a crucial role in power distribution and energy systems, CD cores pave the way for high-performance, energy-efficient solutions.
    LIRE LA SUITE
  • Transformer Cores: Enhancing Efficiency and Performance with Silicon Steel Transformer Cores: Enhancing Efficiency and Performance with Silicon Steel
    Jun 06, 2024
    Transformer cores play a crucial role in the efficient operation of transformers. These cores are typically made of a material called silicon steel, which possesses excellent magnetic properties. In this article, we will explore the significance of transformer cores, highlight different types of cores, and discuss their application scenarios. 1. Importance of Transformer Cores: Transformer cores serve as the magnetic circuit that facilitates energy transfer between the primary and secondary windings of a transformer. Their primary function is to provide a low-reluctance path for the magnetic flux generated by the alternating current, resulting in efficient energy conversion. By utilizing high-quality silicon steel, transformer cores minimize energy losses and enhance overall performance. 2. Silicon Steel and its Benefits: Silicon steel, also known as electrical steel or laminated steel, is the preferred material for transformer cores due to its magnetic properties. It contains silicon in specific compositions to reduce magnetic losses caused by eddy currents and hysteresis. Silicon steel offers low core losses, high permeability, and excellent saturation induction, making it an ideal choice for transformer cores. 3. Types of Transformer Cores: E-Core: The E-shaped core is one of the most commonly used transformer cores. It offers high winding space utilization and allows the primary and secondary windings to share a common structure. The E-core design provides efficient flux distribution and minimizes stray magnetic fields, resulting in improved performance and reduced losses. C-Core: The C-core is another popular design for transformer cores. It is fabricated by winding silicon steel strips into a closed core shape. C-cores offer a compact and lightweight structure, ensuring high energy efficiency. With carefully designed air gaps and optimal winding configurations, C-cores exhibit low losses and excellent magnetic performance. 4. Application Scenarios: Power Distribution Transformers: Both E-core and C-core transformer designs find extensive applications in power distribution systems. E-cores are commonly employed in high-power transformers where efficiency and compact size are essential considerations. C-cores, on the other hand, are suitable for smaller transformers used in residential or commercial applications. Audio Transformers: E-cores are often utilized in audio transformers where quality and fidelity are critical. These transformers ensure effective signal transmission and minimize distortion. The superior magnetic properties of silicon steel cores contribute to improved audio performance, offering clean and accurate sound reproduction. Renewable Energy Systems: Transformers used in renewable energy systems, such as solar and wind power, require efficient energy conversion. Both E-cores and C-cores can be employed depending on the specific requirements of the system. These cores enable effective power transmission, reducing energy losses and maximizing the utilization of renewable resources. Transformer cores, made of silicon steel, are vital components that optimize the efficiency and performance of transformers. Whether in power distribution, audio applications, or renewable energy systems, the choice of E-cores or C-cores depends on the specific design considerations. By leveraging the high magnetic permeability and low core losses of silicon steel cores, transformers can deliver optimal functionality in various operational scenarios.
    LIRE LA SUITE
  • Transformative Core Materials: CRGO & CRNGO for Optimal Performance in Transformers Transformative Core Materials: CRGO & CRNGO for Optimal Performance in Transformers
    May 27, 2024
    Transformers play a vital role in electrical power systems, enabling efficient transmission and distribution of electricity. At the heart of every transformer lies the core, a crucial component that ensures the smooth conversion of electrical energy between different voltage levels. This article will explore two commonly used core materials in transformers, CRGO (Cold-Rolled Grain Oriented) and CRNGO (Cold-Rolled Non-Grain Oriented), highlighting their characteristics, advantages, and application scenarios. CRGO Transformer Cores CRGO cores are widely employed in power transformers, where high efficiency and low core losses are crucial. The production process involves cold-rolling a silicon steel strip to align the grains in the crystal lattice structure, resulting in excellent magnetic properties. CRGO cores exhibit the following key features: Reduced Core Losses: The grain-oriented structure of CRGO cores minimizes magnetic hysteresis and eddy current losses, leading to superior energy efficiency and reduced heat generation. High Magnetic Permeability: CRGO cores exhibit high magnetic permeability, enabling efficient magnetization and demagnetization cycles during power conversion processes, thus enhancing overall transformer performance. Low Magnetostriction: Magnetostriction is the phenomenon where a material changes shape under the influence of a magnetic field. CRGO cores have low magnetostriction, reducing mechanical stress on the transformer and minimizing audible noise. Application Scenarios: CRGO cores are commonly used in large power transformers, distribution transformers, and high-power applications due to their excellent energy conversion efficiency and performance stability over a wide range of operating conditions. CRNGO Transformer Cores CRNGO cores are predominantly employed in low and medium-power transformers, along with various electrical machines, such as motors and generators. Unlike CRGO cores, CRNGO cores do not possess grain-oriented crystal structures. Their key characteristics include: Enhanced Permeability: Although lower than CRGO cores, CRNGO cores still exhibit reasonable magnetic permeability, making them suitable for applications requiring moderate power conversion efficiency. Lower Production Costs: The absence of grain orientation in CRNGO cores simplifies the manufacturing process, resulting in reduced production costs compared to CRGO cores. Wide Variety of Shapes: CRNGO cores can be easily tailored into different shapes and sizes, allowing for design flexibility and customization to meet specific application requirements. Application Scenarios: CRNGO cores find extensive use in lower-power transformers, small power supplies, electric vehicles, and other applications demanding cost-effectiveness and optimal performance within a limited operating range. Selecting the appropriate transformer core material is critical to achieving optimal performance and efficiency in various electrical applications. CRGO cores excel in high-power transformers, where minimal losses and excellent energy conversion are paramount. On the other hand, CRNGO cores find applications in low-to-medium-power transformers, motors, and generators, offering a balance between performance and cost-effectiveness. Understanding the characteristics of these transformative core materials is essential for designing reliable and efficient electrical systems. As a leading transformer manufacturer, our company specializes in producing high-quality transformer cores tailored to meet the diverse needs of our customers. Whether you require CRGO or CRNGO cores, we are committed to delivering exceptional products that optimize performance and contribute to the advancement of electrical power systems. We welcome you to contact us for any transformer core requirements or further inquiries.  
    LIRE LA SUITE
  • Quelles sont les caractéristiques du noyau laminé du transformateur ? Quelles sont les caractéristiques du noyau laminé du transformateur ?
    Apr 11, 2024
    Noyaux de transformateur sont généralement constitués de tôles d'acier au silicium. Acier au silicium, un type de carbone avec une teneur en silicium allant de 0,8 à 4,8 %, de fortes propriétés magnétiques. tôles d'acier au silicium pour noyaux de transformateur permet une induction magnétique plus élevée, conduisant à une taille réduite.En pratique, les transformateurs fonctionnent dans des conditions de courant, ce qui entraîne des pertes à la fois dans la résistance et dans le noyau. Ces pertes se composent de deux composantes : la perte par hystérésis et la perte par courants de Foucault.perte par hystérésis et perte par courants de FoucaultLa perte d'hystérésis se produit en raison du phénomène d'hystérésis magnétique dans le matériau du noyau pendant le processus de magnétisation. L'acier au silicium a une boucle d'hystérésis étroite, qui minimise la perte d'hystérésis et réduit la génération de chaleur dans le noyau.Pourquoi transformons-nous l’acier au silicium en tôles laminées au lieu d’utiliser un bloc solide ? La réponse réside dans la minimisation d’un autre type de perte de fer appelé « perte par courants de Foucault ». Lorsqu'un courant alternatif circule dans l'enroulement, il génère un flux magnétique variable dans le noyau. Ce flux changeant induit des courants de Foucault dans le matériau du noyau, entraînant une génération de chaleur. Pour minimiser les pertes par courants de Foucault, les noyaux de transformateur sont fabriqués en empilant des tôles isolées d'acier au silicium, créant ainsi un chemin compact et efficace pour les courants de Foucault avec une section transversale réduite. De plus, la teneur en silicium de l’acier augmente sa résistivité, atténuant ainsi davantage les effets des courants de Foucault.Généralement, les noyaux de transformateur sont construits à l’aide de tôles d’acier au silicium laminées à froid d’une épaisseur de 0,2 à 0,5 mm. Ces feuilles sont découpées en formes allongées puis empilées selon une configuration « en forme de E » ou « en forme de C », selon les besoins spécifiques. Des stratifications plus fines et des sections entrelacées plus étroites entraînent une meilleure suppression des courants de Foucault, une diminution de l'élévation de température et des économies de coûts de matériaux.
    LIRE LA SUITE
  • Quelles sont les différences entre les noyaux de transformateur de type E et de type C ? Quelles sont les différences entre les noyaux de transformateur de type E et de type C ?
    Apr 09, 2024
    Les transformateurs utilisent différents types de noyaux, les plus courants étant Type E et Type C noyaux. Quelles sont les différences entre ces deux types de noyaux ? Et dans quelles applications sont-ils couramment utilisés ? Aujourd'hui, SHUNGE vous raconte tout. Type E et Type AE Les noyaux sont largement utilisés dans l'industrie. L'un de leurs principaux avantages est que les enroulements primaire et secondaire peuvent partager le même noyau, ce qui entraîne un facteur d'utilisation de fenêtre plus élevé. Le noyau protège également les enroulements, les rendant moins sensibles aux dommages mécaniques. De plus, les noyaux de type E ont une plus grande zone de dissipation thermique et réduisent la dispersion du champ magnétique. Cependant, les noyaux de type E présentent également certains inconvénients. Ils ont tendance à avoir une résistance magnétique plus élevée en raison de la présence d’entrefers plus grands dans le chemin magnétique, ce qui réduit les performances globales du circuit magnétique. De plus, les noyaux de type E sont sujets à des problèmes tels qu'une utilisation accrue de fils de cuivre, une plus grande inductance de fuite et une susceptibilité aux interférences de champ magnétique externe. Les noyaux de type C sont fabriqués en enroulant des bandes d'acier au silicium laminées à froid, qui sont ensuite soumises à des processus de traitement thermique et d'imprégnation pour former des noyaux fermés. Ces cœurs fermés sont ensuite divisés pour créer deux cœurs de type C. Les enroulements sont ensuite encapsulés dans les noyaux et une paire de noyaux de type C sont assemblés et fixés ensemble pour former le transformateur. Type C les noyaux peuvent avoir de très petits entrefers et offrent des avantages tels qu'une taille plus petite, un poids plus léger et une utilisation plus élevée des matériaux. Alors, comment pouvons-nous identifier le type de noyau de transformateur utilisé dans une alimentation électrique ? 1. Identification basée sur l’apparence : Les noyaux de type E ont une structure en forme de coque, avec un noyau qui s'enroule autour des bobines. Ils sont généralement constitués de tôles d'acier au silicium de haute qualité telles que D41 et D42. Les noyaux de type C, quant à eux, sont constitués de bandes d'acier au silicium laminées à froid et ont une structure de type noyau. 2. Identification basée sur le nombre de bornes de bobinage : Les transformateurs de puissance ont souvent deux enroulements, un primaire et un secondaire, ce qui donne lieu à quatre connexions aux bornes. Certains transformateurs de puissance peuvent avoir une couche de blindage supplémentaire entre les enroulements primaire et secondaire pour supprimer le bruit CA et les interférences. Dans de tels cas, la couche de blindage est mise à la terre. Par conséquent, les transformateurs de puissance ont généralement au moins quatre connexions de bornes. 3. Identification basée sur la méthode d'empilement des tôles d'acier au silicium : Dans les transformateurs de puissance de type E, les tôles d'acier au silicium sont entrelacées, sans espace d'air entre les tôles en forme de E et en forme de I. L’ensemble du noyau s’emboîte étroitement. En revanche, les transformateurs d'entrée/sortie audio présentent certains espaces entre leurs feuilles en forme de E, ce qui les distingue des transformateurs de puissance. Les transformateurs de type C sont généralement utilisés comme transformateurs de puissance. Shunge Steel, fondée en 2008 et basée à Lecong, Foshan, produit des noyaux présentant des caractéristiques telles qu'une faible perte de fer, une perméabilité magnétique élevée et une induction de saturation élevée. Nos noyaux trouvent des applications dans divers domaines, notamment la communication de signaux, la transmission de puissance, la traction, les ressources renouvelables, le contrôle de puissance des stations de recharge, les mesures et le contrôle de haute précision, la gestion des batteries de véhicules à énergie nouvelle, le contrôle de puissance, le soudage et le contrôle de moteur de véhicule à énergie nouvelle. Si vous avez des exigences fondamentales, n'hésitez pas à Contactez-nous.
    LIRE LA SUITE
  • DIX différences entre les transformateurs de type sec et les transformateurs immergés dans l'huile DIX différences entre les transformateurs de type sec et les transformateurs immergés dans l'huile
    Mar 27, 2024
    Récemment, nous avons reçu des demandes de clients concernant transformateurs secs et transformateurs immergés dans l’huile.Comme vous le savez peut-être, les transformateurs de type sec sont généralement plus chers que les transformateurs immergés dans l'huile. Mais pourquoi? Quelle est la différence entre eux ?Laissez Catherine vous l'expliquer aujourd'hui !Emplacement d'installationTransformateurs secs sont préférés pour les emplacements intérieurs tels que les sous-sols, les sols et les toits, en particulier dans les zones à forte densité de population humaine. Les transformateurs immergés dans l'huile sont généralement utilisés dans les sous-stations.ApplicationLes transformateurs de type boîte sont généralement utilisés pour les applications intérieures, tandis que les transformateurs immergés dans l'huile sont couramment utilisés pour l'alimentation électrique temporaire en extérieur.Considérations spatialesLe choix entre les transformateurs secs et les transformateurs immergés dans l'huile dépend de l'espace disponible. les transformateurs immergés dans l'huile conviennent aux espaces plus grands, tandis que les transformateurs de type sec sont préférés dans les espaces compacts.Climat : les transformateurs immergés dans l’huile sont plus adaptés aux environnements humides et chauds. Si transformateurs secs sont utilisés dans de telles conditions, ils doivent être équipés de systèmes de refroidissement à air forcé.ApparenceLes transformateurs de type sec ont des noyaux et des bobines visibles, tandis que les transformateurs immergés dans l'huile sont enfermés et seule la coque extérieure est visible.ConnexionLes transformateurs de type sec utilisent principalement des bagues en caoutchouc de silicone, tandis que les transformateurs immergés dans l'huile utilisent souvent des bagues en porcelaine.Capacité et tensionLes transformateurs secs sont principalement utilisés à des fins de distribution, avec des capacités allant jusqu'à 1 600 KVA et des tensions inférieures à 10 KV. les transformateurs immergés dans l'huile peuvent gérer toutes les capacités et tous les niveaux de tension, y compris la haute tension telle que 1 000 KV.Isolation et refroidissementLes transformateurs de type sec utilisent une isolation en résine et reposent sur un refroidissement naturel ou à air pulsé, tandis que les transformateurs immergés dans l'huile utilisent de l'huile isolante pour l'isolation et la dissipation de la chaleur à travers les radiateurs ou les ailettes de refroidissement.Emplacements appropriésLes transformateurs de type sec sont couramment utilisés dans des environnements ignifuges et antidéflagrants, souvent dans des bâtiments de grande taille et de grande hauteur. D'un autre côté, les transformateurs immergés dans l'huile sont généralement installés à l'extérieur avec des dispositions pour un « puits d'huile incident » en cas de fuites ou de déversements.Capacité de chargementLes transformateurs de type sec doivent fonctionner dans les limites de leur capacité nominale, tandis que les transformateurs immergés dans l'huile ont une meilleure capacité de surcharge.CoûtLes transformateurs de type sec sont généralement plus coûteux que les transformateurs immergés dans l’huile de même capacité.Si vous souhaitez en savoir plus sur les noyaux de transformateur, espérez surtout acheter de bons noyaux de transformateur en Chine. Contacter SHUNGE! Nous serons très heureux de vous aider ! 
    LIRE LA SUITE
  • Pourquoi les noyaux de transformateur utilisent des stratifications en acier au silicium Pourquoi les noyaux de transformateur utilisent des stratifications en acier au silicium
    Mar 20, 2024
    Noyaux de transformateur jouent un rôle crucial dans le fonctionnement efficace et fiable des transformateurs, qui sont des dispositifs essentiels dans les systèmes de distribution d’énergie. Ces noyaux sont généralement constitués de tôles d'acier au silicium laminées, appelées tôles d'acier au silicium. Mais vous êtes-vous déjà demandé pourquoi l'acier au silicium est le matériau préféré pour les noyaux des transformateurs ? Examinons les raisons de ce choix.1. Propriétés magnétiques :L'acier au silicium possède d'excellentes propriétés magnétiques qui en font un matériau idéal pour les noyaux de transformateurs. Il présente de faibles pertes dans le noyau, également appelées pertes par hystérésis, qui se produisent lorsque le champ magnétique dans le noyau change de direction de manière répétée pendant les cycles d'entrée et de sortie d'un transformateur. Les faibles pertes par hystérésis de l’acier au silicium contribuent à minimiser le gaspillage d’énergie et à améliorer l’efficacité globale du transformateur. 2. Haute perméabilité :La perméabilité fait référence à la capacité d'un matériau à laisser passer le champ magnétique. L'acier au silicium présente une perméabilité élevée, ce qui signifie qu'il peut canaliser et concentrer efficacement le flux magnétique dans le noyau. Cette propriété assure un couplage magnétique efficace entre les enroulements primaire et secondaire du transformateur, entraînant un transfert d'énergie optimal. 3. Résistance électrique :Une autre caractéristique essentielle de l’acier au silicium est sa résistance électrique élevée, qui contribue à atténuer les pertes par courants de Foucault. Des courants de Foucault sont induits dans le noyau en raison du champ magnétique alternatif, entraînant une génération de chaleur et des pertes d'énergie. Cependant, en utilisant des tôles, le noyau en acier au silicium réduit efficacement le cheminement des courants de Foucault, minimisant ainsi leurs effets néfastes et améliorant les performances du transformateur. 4. Préservation de l’intégrité fondamentale :Les transformateurs fonctionnent à différentes fréquences, généralement comprises entre 50 et 60 Hz. Ce champ magnétique alternatif peut générer une chaleur importante, ce qui peut avoir un impact sur l'intégrité structurelle du noyau. L'acier au silicium, avec ses propriétés de saturation magnétique élevée et de faibles magnétostrictions, peut résister à ces variations de température et conserver la forme et les performances du noyau dans le temps. 5. Rentabilité :Acier au silicium est un matériau rentable largement disponible sur le marché, ce qui en fait un choix pratique pour les noyaux de transformateur. Ses propriétés magnétiques favorables et son utilisation généralisée contribuent également à son prix abordable.En conclusion, l’utilisation de tôles d’acier au silicium dans les noyaux de transformateur est motivée par ses propriétés magnétiques exceptionnelles, sa perméabilité élevée, ses faibles pertes dans le noyau et sa résistance électrique. Ces caractéristiques en font le matériau privilégié pour garantir un transfert d’énergie efficace, minimiser les pertes et améliorer les performances globales et la fiabilité des transformateurs.
    LIRE LA SUITE
  • Quelle est la différence entre ajouter ou non un noyau de fer au transformateur ? Quelle est la différence entre ajouter ou non un noyau de fer au transformateur ?
    Mar 14, 2024
    Le transformateur est un appareil qui convertit la tension alternative, le courant et l'impédance. Lorsque le courant alternatif circule à travers la bobine primaire, un flux magnétique alternatif est généré dans le noyau de fer (ou le noyau magnétique), provoquant l'induction d'une tension (ou d'un courant) dans la bobine secondaire. Un transformateur est constitué de un noyau de fer (ou noyau magnétique) et une bobine. Le noyau de transformateur est le circuit magnétique principal du flux magnétique couplé dans le transformateur.Principe de fonctionnement du noyau du transformateurLa fonction du noyau du transformateur est de former un circuit magnétique de flux de couplage à très faible réluctance. La réticence étant très faible, l’efficacité de fonctionnement du transformateur est grandement améliorée.D'une manière générale, les transformateurs sont divisés en fonction du matériau de couplage entre les bobines, y compris les transformateurs à noyau d'air, les transformateurs à noyau magnétique et les transformateurs à noyau de fer. Les transformateurs à noyau d'air et les transformateurs à noyau magnétique sont principalement utilisés dans les circuits électroniques haute fréquence.Parce que acier au silicium lui-même est un matériau avec une forte perméabilité magnétique, il peut produire une plus grande intensité d'induction magnétique dans la bobine sous tension, ce qui peut réduire la taille du transformateur et améliorer l'efficacité de fonctionnement du transformateur. La caractéristique de l'acier au silicium est qu'il possède l'intensité d'induction magnétique à saturation la plus élevée (supérieure à 2,0 T) parmi les matériaux magnétiques doux couramment utilisés. Par conséquent, lorsqu'il est utilisé comme noyau de transformateur, il peut fonctionner à un point de fonctionnement très élevé (comme une valeur d'induction magnétique de fonctionnement de 1,5 T). Cependant, l’acier au silicium présente également la perte de fer la plus importante parmi les matériaux magnétiques doux couramment utilisés. Afin d'éviter que le noyau de fer ne chauffe en raison de pertes excessives, sa fréquence d'utilisation n'est pas élevée et il ne peut généralement fonctionner qu'en dessous de 20 KHz. Par conséquent, la fréquence des circuits électriques est généralement d’environ 50 Hz.Notre noyau de transformateur de nouvelle constructionShunge Company fournit non seulement des matières premières de première main en tôle d'acier au silicium, mais peut également personnaliser les noyaux de transformateur finis pour les clients. Si vous avez des besoins, s'il vous plaît Contactez-nous.
    LIRE LA SUITE
  • Quel impact le poinçonnage des tôles d'acier a-t-il sur les performances du moteur ? Quel impact le poinçonnage des tôles d'acier a-t-il sur les performances du moteur ?
    Feb 02, 2024
    La taille du poinçon du stratification en acier est donné par la conception. Ce qui suit examine les facteurs qui affectent la qualité de la fabrication lorsque la conception reste inchangée.1. Perte et perméabilité magnétique des tôles d'acier au siliciumLes propriétés de perte spécifiques de acier au silicium les feuilles de différents fabricants et les différents numéros de lots d'un même fabricant ne sont pas exactement les mêmes. Ils ont donc un impact important sur noyau du moteur laminage ou le laminage EI.Bien qu’il existe des valeurs standard prescrites, elles fluctuent dans une certaine plage. Si l'amplitude de la fluctuation est relativement grande ou si le matériau de la tôle d'acier au silicium lui-même ne répond pas aux exigences, l'utilisation de telles tôles d'acier au silicium sur le moteur affectera grandement les performances du moteur, en particulier pour les moyennes et grandes moteurs, où la perte de fer représente 10 % de la perte. Plus la proportion est élevée, plus l’impact sur les performances est évident (principalement l’augmentation de la température et le facteur de puissance). Il s’agit d’un danger caché difficile à détecter à partir de la conception électromagnétique.2. Le moule en tôle d'acier au silicium est hors toléranceLes moules en tôle d'acier au silicium, tels que les matrices de poinçonnage et les moules de démoulage, présentent un espace entre le poinçon et la matrice qui augmente progressivement au cours de l'utilisation. Certains fabricants sont encore confrontés à la production lorsque le moule est hors tolérance, et les conséquences sont les suivantes : les bavures de poinçonnage sont considérablement augmentées. Si la bavure est importante, la perte de fer et le courant à vide augmenteront, entraînant une augmentation de la température du moteur, une diminution du facteur de puissance et une diminution du rendement.3. Isolation entre tôles d'acier au siliciumL'isolation entre tôles d'acier au silicium peut supprimer les courants de Foucault dans le noyau de fer, réduisant ainsi la perte par courants de Foucault qui en résulte (elle est incluse dans la perte de fer). La couche isolante entre les puces est formée des trois manières suivantes :(1) Isolation inter-puces composée du film de peinture des tôles d'acier au silicium laminées à froid ;(2) Le constructeur du moteur applique une peinture isolante sur les tôles perforées sans film de peinture ;(3) Le constructeur du moteur oxyde les tôles perforées pour former une couche isolante. 
    LIRE LA SUITE
  • Comment fonctionne un servomoteur ? Comment fonctionne un servomoteur ?
    Mar 05, 2024
    Le servomoteur fait référence au moteur qui contrôle le fonctionnement des composants mécaniques du système d'asservissement. La vitesse du rotor du servomoteur est contrôlé par le signal d'entrée et peut répondre rapidement. Dans le système de contrôle automatique, il est utilisé comme actionneur et présente les caractéristiques d'une petite constante de temps électromécanique, d'une linéarité élevée, d'une tension de démarrage, etc. Il peut convertir le signal électrique reçu en sortie de déplacement angulaire ou de vitesse angulaire sur l'arbre du moteur. Divisé en deux catégories : servomoteurs DC et AC. Principe de fonctionnementUn mécanisme d'asservissement est un système de contrôle automatique qui permet aux quantités contrôlées de sortie telles que la position, l'orientation et l'état d'un objet de suivre tout changement dans la cible d'entrée (ou une valeur donnée). Le servo s'appuie principalement sur des impulsions pour le positionnement. Fondamentalement, on peut comprendre que lorsque le servomoteur reçoit une impulsion, il tournera selon un angle correspondant à l'impulsion, réalisant ainsi un déplacement. Étant donné que le servomoteur lui-même a pour fonction d'émettre des impulsions, chaque fois que le servomoteur tourne d'un angle, il émettra un nombre correspondant d'impulsions. De cette façon, il forme une réponse aux impulsions reçues par le servomoteur, ou est appelé boucle fermée. De cette façon, le système saura combien d'impulsions sont envoyées au servomoteur et combien d'impulsions sont reçues en même temps. De cette manière, la rotation du moteur peut être contrôlée de manière très précise, obtenant ainsi un positionnement précis pouvant atteindre 0,001 mm.Classification des servomoteursLes servomoteurs peuvent être divisés en servomoteurs à courant continu et servomoteurs à courant alternatif.Servomoteur à courant continuLa structure de base d'un servo DC est similaire à celle d'un moteur DC général. Vitesse du moteur n=E/K1j=(Ua-IaRa)/K1j, où E est la force contre-électromotrice de l'induit, K est une constante, j est le flux magnétique de chaque pôle, Ua et Ia sont la tension d'induit et le courant d'induit, Ra est La résistance d'induit, changeant Ua ou changeant φ, peut contrôler la vitesse du servomoteur à courant continu, mais la méthode de contrôle de la tension d'induit est généralement utilisée. Dans le servomoteur CC à aimant permanent, l'enroulement d'excitation est remplacé par un aimant permanent et le flux magnétique φ est constant. . Le servomoteur CC présente de bonnes caractéristiques de réglage linéaire et une réponse rapide.Cependant, les servomoteurs AC ont des limites en termes de commutation et de vitesse des balais, ont une résistance supplémentaire et produisent des particules d'usure.Servomoteur à courant alternatifLa structure de base d'un servomoteur AC est similaire à celle d'un moteur à induction AC (moteur asynchrone). Il y a deux enroulements d'excitation Wf et des enroulements de commande WcoWf avec un déplacement d'espace de phase d'un angle électrique de 90° sur le stator. Ils sont connectés à une tension alternative constante et utilisent les changements de tension alternative ou de phase appliqués à Wc pour contrôler le fonctionnement du moteur.Les servomoteurs AC présentent les caractéristiques d'un fonctionnement stable, d'une bonne contrôlabilité, d'une réponse rapide, d'une sensibilité élevée et d'indicateurs de non-linéarité stricts des caractéristiques mécaniques et des caractéristiques de réglage (qui doivent être inférieurs à 10 % à 15 % et inférieurs à 15 % à 25 % respectivement). .Shungrui Motor, une filiale de Shunge, est spécialisée dans les servomoteurs AC à aimants permanents de haute puissance et à couple élevé. Il existe actuellement deux séries, 18 et 25, qui peuvent répondre aux besoins de la plupart des clients.Nous pouvons également fournir des services de personnalisation de moteurs en fonction des besoins du client, ce qui est très rentable. Bienvenue à nous contacter pour consultation.
    LIRE LA SUITE
  • Comment un transformateur réalise-t-il une transformation de tension ? Comment un transformateur réalise-t-il une transformation de tension ?
    Jan 15, 2024
    Transformateurs réaliser une transformation de tension par induction électromagnétique. Lorsqu'un courant alternatif (AC) circule dans l'enroulement primaire du transformateur, il génère un champ magnétique changeant. Ce champ magnétique changeant induit une tension dans l'enroulement secondaire en fonction du rapport de spires entre les enroulements primaire et secondaire. En conséquence, la tension est augmentée ou diminuée sans modifier la fréquence, permettant une transmission efficace de l'énergie électrique entre différents niveaux de tension.Un transformateur fonctionne sur le principe de l’induction électromagnétique. Il se compose de deux enroulements isolés enroulés autour d'un noyau de fer fermé. Ces enroulements, appelés enroulement primaire ou premier enroulement, et enroulement secondaire ou deuxième enroulement, ont des nombres de spires différents et sont uniquement couplés magnétiquement sans connexion électrique.Lorsque l’enroulement primaire est connecté à une source d’alimentation CA, un courant alternatif le traverse, créant un flux magnétique alternatif dans le noyau de fer. Ce flux induit des tensions, notées respectivement e1 et e2, dans les enroulements primaire et secondaire à la même fréquence.Lorsqu'une charge est connectée à l'enroulement secondaire, la tension e2 fait circuler le courant à travers la charge, permettant le transfert d'énergie électrique. Ceci accomplit la transformation de tension. Selon l'équation, l'amplitude de la tension induite dans les enroulements primaire et secondaire est proportionnelle à leur nombre de spires respectif. Étant donné que la tension induite est approximativement égale à la tension réelle des enroulements, en ayant un nombre de tours différent dans les enroulements primaire et secondaire, la conversion de tension dans un transformateur peut être obtenue.
    LIRE LA SUITE
  • Qu'est-ce qu'un noyau dans le transformateur ? Qu'est-ce qu'un noyau dans le transformateur ?
    Jan 22, 2024
     Le noyau du transformateur est la partie du circuit magnétique du transformateur. Il est généralement constitué de matériaux laminés à chaud ou à froid. tôles d'acier au silicium à haute teneur en silicium et recouvert d'une peinture isolante en surface. Le noyau de fer et les bobines enroulées autour forment un système d’induction électromagnétique complet. La quantité de puissance transmise par le transformateur de puissance dépend du matériau et de la section transversale du noyau. Le noyau de fer est l'un des composants les plus fondamentaux du transformateur. C'est la partie circuit magnétique du transformateur. Les enroulements primaire et secondaire du transformateur se trouvent sur le noyau de fer. Afin d'améliorer la perméabilité du circuit magnétique et de réduire la perte par courants de Foucault dans le noyau de fer, le noyau de fer est généralement constitué d'une tôle d'acier au silicium isolée en surface de 0,35 mm. Le noyau de fer est divisé en deux parties : un poteau de noyau de fer et un joug de fer. Le poteau du noyau de fer est recouvert d'enroulements et le joug de fer relie le noyau de fer pour former un circuit magnétique fermé.Afin d'éviter que les composants métalliques tels que le noyau de transformateur, les pinces et les anneaux de pression du potentiel flottant inductif étant trop élevé et provoquant une décharge pendant le fonctionnement, ces composants doivent être mis à la terre en un seul point. Afin de faciliter les tests et la recherche de défauts, les gros transformateurs ont généralement le noyau et les pinces reliés à la terre via deux traversées respectivement.
    LIRE LA SUITE
1 2 3
Un total de3pages

Need Help? leave a message

laisser un message

We will contact you as soon as possible

nous faire parvenir

Maison

Des produits

whatsApp

Contactez

Need Help? Chat with us

Start a Conversation

Hi! Click one of our members below to chat on